Improper Integrals

63. Determine the domain of the function $f(x) = \frac{1}{\sqrt[3]{(x-1)^2}}$. Then compute the following integral and explain its geometric meaning:

$$\int_{-1}^{2} \frac{\mathrm{d}x}{\sqrt[3]{(x-1)^2}}$$

Sequence of Functions and Uniform Convergence

64. The sequence of functions $(f_n)_{n \in \mathbb{N}}$ is defined by:

$$f_n: [0,1] \to \mathbb{R}, \qquad f_n(x) = 2x + \frac{x}{n}.$$

- (a) Determine the limit function $f(x) = \lim_{n \to \infty} f_n(x)$.
- (b) Is the limit function f(x) continuous on [0,1]? Provide a detailed explanation.
- (c) Verify whether $(\lim_{n\to\infty} f_n(x))' = \lim_{n\to\infty} f'_n(x)$ holds for all $x \in [0,1]$.
- (d) Check if $\int_0^1 \lim_{n \to \infty} f_n(x) \, \mathrm{d}x = \lim_{n \to \infty} \int_0^1 f_n(x) \, \mathrm{d}x.$

65. The sequence of functions $f_n : [0, \infty) \to \mathbb{R}$ is given by $f_n(x) = \frac{nx}{1+nx}$. Determine the limit function and establish whether the sequence converges uniformly on $[a, \infty)$, where a > 0. Does the sequence converge uniformly on $[0, \infty)$?

66. The sequence of functions $(f_n)_{n \in \mathbb{N}}$ is defined by:

$$f_n: [0,1] \to \mathbb{R}, \qquad f_n(x) = \frac{1}{2}x^n.$$

- (a) To which function does the sequence $(f_n)_{n \in \mathbb{N}}$ converge on [0, 1]?
- (b) Is the convergence in (a) uniform?

All above math problems are taken from the following website: https://osebje.famnit.upr.si/~penjic/teaching.html. THE READER CAN FIND ALL SOLUTIONS TO THE GIVEN PROBLEMS ON THE SAME PAGE.